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hydrogenation of benzene recently described by Muetterties 
and Hirsekorn21 we do call attention to the similarity be­
tween our free-radical mechanism and that which has been 
advanced for the HCo(CN)s3~-catalyzed hydrogenation of 
conjugated olefins.22 In this connection, we suggest that the 
hydrogenation of alkenes which typically accompanies hy-
droformylation, and which is especially pronounced for 
a,(3-unsaturated compounds and at high temperatures, may 
also derive from this type of free-radical mechanism.23 

We are continuing this investigation with a view to test­
ing the above interpretations and predictions, and elucidat­
ing possible mechanisms of hydrogenation of coal-related 
substances. 
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Bifunctional Catalysis of the Enolization of Acetone1 

Sir: 

We wish to report that the third-order term for acid-base 
catalysis of acetone enolization exhibits a Bronsted /3AB 
value of 0.15, a solvent isotope effect of ^ H 2 O A D 2 O = 2.0, 
and a C-H isotope effect of & H / ^ D = 5.8. We conclude 
that this reaction represents true bifunctional catalysis with 
partial proton abstraction by acetate ion and a significant 
movement of the proton of acetic acid toward the carbonyl 
oxygen atom in the transition state. 

The interpretation of the third-order term, & A B [ H A ] [ B ] , 
in the rate law for acetone enolization (eq 1) 

*obsd = MH 2 O] + £ H + [ H 3 0 + ] + * H O - [ H O - ] + 
* A [HA] +A: B [B] +k AB [H A] [B] (D 

has been the subject of much controversy and has played an 
important role in the development of ideas on the mecha­
nism of acid-base catalysis in solution and at the active 
sites of enzymes.2 In particular, attempts have been made, 
and criticized, to interpret all of the rate terms as bifunc­
tional, third-order acid-base catalysis in which water may 
cooperate in the rate-determining step as an acid-base 
species.2-3 A reexamination of this problem appeared war­
ranted because the mechanism for the k& and k& terms is 
now known. The &A term has been shown to represent ca­
talysis by the proton of the removal of a proton by acetate 
ion (IC2/KACH+, Scheme I),4 '5 most directly by the demon­
stration that the rate of the reverse, ketonization reaction of 
R C H = C R ' O H is entirely accounted for by the rate of pro-
tonation of the corresponding enol ether, R C H = 
CR'OCH3, in which proton removal from -OCH3 in the 
transition state is impossible.5 Thus, the proton is fully 
transferred to the carbonyl oxygen atom in the transition 
state (i.e., a = 1.0). The k\ term (general base catalysis of 
C-H proton removal) can only involve stabilization of the 
transition state by hydrogen bonding of the carbonyl oxygen 
atom to water because there is no thermodynamic advan­
tage to the transfer of a proton from water to the enolate 
ion (pK « 11); a for this reaction is, therefore, ca. 0-0.2.6 

One of us (W.P.J.) suggested that the third-order term rep­
resents simply a modification of the k& term, in which ace­
tic acid instead of water is hydrogen bonded to the transi­
tion state.6 Since the value of a A for hydrogen bonding is 
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PK0 of XCH2CO2H 

Figure 1. Bronsted plot of the third-order rate constants for catalysis of 
acetone enolization by acid-base pairs at 25°, ionic strength 2.0 
(KNO3). Initial rates were measured by iodination with buffer concen­
trations of 0-2 M as described previously;6 control experiments showed 
no major specific salt or solvent effects. 

close to 0.2,7 the same as is found for many carbonyl addi­
tion reactions,8 and the value of ^B is 0.88,2 it was predicted 
that the value of /3AB for the third-order term would be 
0.88-0.2 or approximately 0.68. 

In fact, the magnitude of the third-order term is almost 
independent of the •pK of the acid-base pair used, with a 
value of/3AB = 0.15 (Figure 1). The third-order term could 
be detected for all carboxylic acids of pA: > 2.8 but not for 
cacodylic acid, for which an upper limit is shown in the fig­
ure. The small Bronsted slope means that when the pK of 
the acid-base pair is increased the increase in the effective­
ness of the catalyzing base is largely cancelled by a decrease 
in the effectiveness of the catalyzing acid. The dependence 
on the base strength of B must lie between /3B = 0.88 (no 
protonation of the carbonyl oxygen) and /3B = 0.459 (com­
plete protonation of the carbonyl oxygen). The dependence 
on the strength of the catalyzing acid must therefore be rel­
atively large (aA ~ 0.5) for the third-order term to account 
for the observed /3A B of 0.15.' ° 

The C-H isotope effect for the third-order term was de­
termined from the rates of enolization of CH 3 COCH 3 and 
CD3COCD3 with AcOH and A c O - as catalysts. The ob­
served rate constant ratio of 5.8 gives a normal primary iso­
tope effect (uncorrected for secondary effects of adjacent 
C-H groups) similar to values previously reported for acid 
and base catalyzed enolization4aJ1 and indicates consider­
able C-H (or C-D) bond cleavage in the transition state. 
The solvent deuterium isotope effect for the third-order 
term was found to be ATH2C-AD2O = 2.0 for both 
CH 3 COCH 3 and CD3COCD3 . In contrast, the solvent deu­
terium isotope effect is only 1.0-1.25 for A:B and 1.1-1.5 for 
&A;4b,i i,i2 t h e | a t t e r v a | u e c o r r e s p o n ( j s to a value of ArH,o/ 
^D 2 O = 0.9-1.2 for proton abstraction by acetate from pro-
tonated acetone, after correction for isotope effects on the 
dissociation constants of HOAc and C H 3 C O H C H 3

+ . ' 3 The 
larger value for the ATAB term shows that there is a signifi­
cant loss of H - O zero-point energy in the transition state. 

The catalytic constants for trimethylamine ./V-oxide (pA"., 
= 4.95, ArA = 20 X 10-6 A/"1 min" ' , Ar8 = 50 X 10~6 A/-'1 

min ', ATAB = 140 X 10~6 M~2 min"1) are significantly 
larger, especially the third-order term, than those for acetic 
acid (pATa = 4.68, kA = 4.8 X IO"6 M~] min""1, Ar6 = 12 5 
X 10 6 A/ - ' min- ' , AAB = 12.6 X 10"6 M~2 min"1) . This 
shows that special structural features of carboxylic acids or 
their conjugate bases are not required for any of these cata­
lytic terms. 

These results, particularly the value of aA = 0.5 and the 
solvent isotope effect ATH2O/ATD2O = 2.0 for the third-order 

term, establish that the mechanism of bifunctional catalysis 
of the enolization of acetone is different from the mecha­
nism of either the second-order base-catalyzed or acid-cata­
lyzed reactions, with a significant movement of the proton 
from the catalyzing acid toward the carbonyl oxygen atom 
in the transition state. Although we do not yet wish to ex­
clude other mechanisms, the data appear to be consistent 
with the hypothesis that the two proton transfers in the 
third-order reaction are truly concerted. 
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Intramolecular Charge Transfer Quenching in Excited 
/3-Vinyl Phenyl Ketones1 

Sir: 

There is now general agreement that, when triplet energy 
transfer is endothermic, olefins interact with excited ke­
tones by a charge transfer process which probably yields an 
exciplex intermediate.23 The complexes collapse to oxetane 
products in variable and often low quantum yields. Synthe­
tically interesting bicyclic oxetanes are known to be formed 
upon irradiation of various unsaturated ketones.4-7 Such in­
tramolecular excited state interactions are gaining in­
creased attention,58 but there is very little quantitative in­
formation available which indicates how rapidly, in bifunc­
tional compounds, intramolecular interactions compete with 
normal decay reactions of individual chromophores. We 
have now obtained this information for two 7,5-unsaturated 
phenyl ketones by (1) monitoring the cis-trans photoisom-
erization of l-phenyl-4-hexene-l-one, 1, and (2) monitoring 
the type II photoelimination of 1-phenyl-2-ethyl-4-pentene-
1-one, 2. In both cases the /3-vinyl group quenches >99% of 
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